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SUMMARY 

Linearized multidimensional flow in a gas centrifuge can be described away from the ends by Onsager’s 
pancake equation. However a rotating annulus results in a slightly different set of boundary conditions from 
the usual symmetry at the axis of rotation. The problem on an annulus becomes ill-posed and requires some 
special attention. Herein we treat axially linear inner and outer rotor temperature distributions and velocity 
slip. An existence condition for a class of non-trivial, one-dimensional solutions is given. New exact solutions 
in the infinite bowl approximation have been derived containing terms that are important at finite gap 
width and non-vanishing velocity slip. The usual one-dimensional, axially symmetric solution is obtained 
as a limit. Our previously reported finite element algorithm has been extended to treat this new class of 
problems. Effects of gap width, temperature and slip conditions are illustrated. Lastly, we report on the 
compressible, finite length, circular Couette flow for the first time. 
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INTRODUCTION 

We are interested in computing the steady, internal flow in a rotating annulus containing a gas, 
say uranium-hexafluoride (UF,). See Figure 1 for a conceptual sketch. 

Incompressible flow between two infinity long rotating cylinders is a classical fluid mechanics 
problem which leads to a simple exact solution of the Navier-Stokes equations.’ Concentric 
cylinders have been used in the study of fluid stability theories for incompressible, circular 
Couette flows as well. Taylor vortices or roll cells are produced in the incompressible regime 
under unstable conditions. l,’ This has been the subject of numerous recent theoretical and 
experimental  effort^.^-^ Also, the problem of atmospheric stability is related to the thermal 
convection in a rotating annulus.’ 

Unstable modes can occur when the inner surface rotates faster than the outer surface or a 
thermal inversion exists. Under some conditions of gap width, Reynolds number, etc. a 
compressible fluid may also exhibit Taylor vortices. Neither theoretical, numerical nor experi- 
mental studies of the compressible Taylor problem have been reported. Furthermore, transition 
and ultimately turbulent flow might occur which would be devastating for isotope separation. 

In a recent numerical examination of viscous, incompressible rotating flows using the finite 
element method, Reference 6 reported a velocity vector plot for the circulation due to a stable 
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Figure 1 .  Rotating gas filled annulus 

differential rotation (i.e. stationary inner rotor). Several more recent numerical and experimental 
works have been reported for concentric cylinders and concentric At the start of our 
work (Circa 1982), to the best of our knowledge the class of problems associated with the internal 
fluid dynamics of a rotating annulus containing a compressible, viscous, heat conducting fluid had 
not been analysed in detail. Our model is subject to the limitations of linearized, steady-state fluid 
mechanics as governed by Onsager's pancake equation' for the vertical boundary layer and the 
Carrier-Maslen end conditions" for the horizontal boundary layers. The Galerkin finite element 
method is used to simultaneously solve our sixth order partial differential equation and boundary 
conditions. We derive some new, exact, uniformly valid analytical solutions for simple axially 
linear inner and outer rotor temperature distributions. Also, we report results for finite length, 
compressible circular Couette flow after establishing the validity of the pancake equation for these 
new applications. 

Since 1982, Conlisk and coworkers published several papers along similar lines. First they 
considered the effect of a mass source/sink on a Boussinesq-type fluid in a rotating annulus." 
Then they extended this to a model annular gas centrifuge with differentially rotating end-caps, 
different uniform rotor temperatures, with feed and withdrawal taken at  three corners of the 
machine.12 More recently, they made claims that theirs is the first self-consistent theory of flow 
and mass transfer in a gas centr i f~ge. '~  Feed through axisymmetric ports in the rotor walls was 
included and a special point was made of the specified boundary condition for the isotope 
separation theory. The separation process was quantified by a scaled end-to-end separation 
factor. We simply note that for pure thermal drive in the long bowl limit for no slip at xT (see 
'Exact solution' section), it can be shown that 

where E is Cohen's E based on the maximum theoretical separative work of the outer rotor.14 Of 
course, this reduces to the usual 7.2/A2 for xT+ 00.l~ 

PERTURBATION THEORY 

The derivation of Onsager's equation from the linearized Navier-Stokes equations using order-of- 
magnitude considerations' or more formal asymptotic expansions' involves the boundary layer 
co-ordinate x. This is so-called scale heights variable, which we define as x - 2A2(1 - q), where 
q is the normalized radial co-ordinate, 0 < q < 1. In the usual asymptotic theory, A + 00 so that 
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0 < x < co. But to reduce the computational domain we substitute 0 < x < xT, for arbitrarily large 
xT. However, for an annulus, 0 < qi < q < 1, but A + 00 so that apparently 0 < x < 00 is again 
obtained and x fails to sense qi.  Suppose'* xT = 2A2(1 - qi). This can be formally justified via 
perturbation theory by defining the gap width 6, 6 = 1 - qi,  such that, 2A26 = O(X,). 

Now when limits are taken in which the stratification parameter, A,  goes to infinity, the gap 
width goes as its inverse. This introduces the further limitation of a 'small' gap, 6 << 1, or, qi 2 1. 
Thus, by construction, 

Therefore the previous asymptotic derivations of the inner-outer expansion and inner-inner 
e~pans ion '~  carry over with the additional similarity rule. It is these equations which lead to 
Onsager's equation and the Carrier-Maslen end conditions for a rotating annulus. The 
appropriate boundary conditions take some further consideration. 

GOVERNING EQUATION AND BOUNDARY CONDITIONS 

Linearized flow in a gas-filled rotating annulus may be described away from the ends by Onsager's 
so-called 'Pancake' equation, written in operator form as 

Lx = L6x + B 2 x y y  = F*(& y), (3) 

L6x = [ex(exxxx)xxl xx (4) 

where x is the master potential with 0 < x < xT and 

subject to eight boundary conditions: 

Note that the source/sink term F*(x,y) may be different from F ( x , y )  in a simple rotating 
cylinder.16 Following a physical or heuristic approach one might simply invoke the same 
specifications at x = xT as at x = 0. That is 

X X ( ~ T ?  Y )  = XXX(~T? Y) = O. (6) 
However, we take a formalistic approach and derive the conditions written earlier (equation ( 5 ) )  
from the weak formulation. 

WEAK FORMULATION 

One of the so-called 'virtues' of the finite element method is the case of changing boundary 
conditions. l 9  The new boundary conditions (equations ( 5 )  or (6 ) )  and boundaries analysed here 
require the computation of the three eigenfunctions discarded by Onsager and followers.' Also 
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the eigenvalues have to be recomputed. Perhaps some crude measurement of this effort can be 
taken from the one-dimensional example in the next section, ‘Exact Solution’. 

In the finite element method we simply retain some additional boundary contributions (natural 
boundary conditions and load vectors) at xT that were previously discarded and modify a few 
essential boundary conditions. Such changes amount to a relatively modest chore. 

General derivation 

The method of weighted residuals requires satisfaction of the vanishing of the weighted residual. 
In other words 

- (0, Lx - F )  = 0 (7) 

over the x, y domain r with boundary X. Formally integrating by parts thrice on x and once on y 
produces 

n n  

n n 

Upper atmosphere natural boundary conditions at xT obviously involve L,x, oxx, L,x, L4x, 0,. We 
treat only the first three boundary conditions. The fourth condition involves a high-order 
derivative which has no immediate physical importance and the last term relates to non-zero 
throughput. The most interesting non-homogeneous boundary conditions at  xT are L,x and L3x. 

Generalized slip 

For a sufficiently large gap, say xT = 15, and stratification, A,  the local wheel flow may indicate 
rarefied flow near xT such that the local Knudsen number is approximately 1. It is well known that 
under rarefied conditions gas behaviour changes and slip occurs.2o That is, fluid can no longer 
adhere to a solid surface but has some finite, non-zero slip velocity. Likewise a temperature slip, 
jump or discontinuity may occur. For simplicity, we assume axial slip in the absence of any 
azimuthal velocity slip or temperature jump. 

Rigorous determination of the slip flow is quite difficult and involves the solution of Boltzmann’s 
equation for the molecule distribution function. An alternative formulation for the molecular flow 
gives a model Kramer’s problem involving an integral equation modified to account for 
exponential stratification.” Although this is an equally interesting problem area, we shall not 
delve further into the thin air of rarefied gas dynamics. Instead we constrain ourselves to a 
macroscopic parametrization of slip. 

The chosen class of problems is defined by boundary conditions in some arbitrary specified 
axial rotor temperature distribution (or temperature gradient) and axial slip parameter. We will 
not address internal sources and sinks either. Discretizing x, considering a vector of local weight 
functions we, and choosing we to be the same as N‘ yields the Galerkin method. Bold characters 
designate column vectors and bold characters in square brackets denote matrices. Introducing the 
Ekman boundary layer suction conditions into the boundary integrals over the horizontal rotating 
surfaces and appropriately integrating by parts, using the boundary conditions 

x x  (O, y )  = X X ( ~ T ,  y )  = (9) 



FLOW IN A ROTATING ANNULUS 219 

equation (8) becomes 

{jp [(L3NeL3NeT + I~’N;N;~)u“ + FeNe] dx dy 

+ 1 [4B2S-’/4Re-1/ZA4 [ex/2N:(x,yo)N;T(x, yo) 

+ e”/’N;(x, O)NzT(x, O)] dx - exr 

e 

N:JxT, y)&N“(X,, y)’dy]ue = 0. (10) 

N‘ is the local basis and ue is the discretization of x over an elementary subdomain involving nodal 
values and derivatives of x. This is just the usual numerical linear algebra problem 

C( [K‘]u‘ - f“) = 0. (1 1) 
e 

The two matrices evaluated at xT are new. The system equations are subject to the essential 
boundary conditions, 

xx(0, Y) = xxx(O, Y) = X X ( ~ T ,  Y) = O.  (12) 

Classical continuum mechanics treats fluid flow with slip, whether it is at an interface of two 
f l ~ i d s ” , ~ ~  or a rarefied gas,24 by assuming that the slip velocity is simply proportional to the 
transverse shear: 

aw 
an 

p”w + p- = 0, 

where p is the absolute viscosity, p” is the dimensional slip coefficient, w is the dimensional 
velocity (used elsewhere it is the usual perturbation velocity) and n is measured normal to the 
boundary. In the terminology of partial differential equation theory, this is just a boundary 
condition of the third kind or Robin’s type. Here p” plays a role similar to the film coefficient 
in Newton’s cooling law, from the theory of heat conduction, and p”/p parametrizes slip. The 
appropriate non-dimensional form of equation (13) for this application is 

BeXTX~~(XT, Y) + L3x(xT, Y) = O, (14) 
where B is the dimensionless slip coefficient, defined as 

and is the simple dimensionless slip coefficient associated with p”. Equation (14) degenerates to 
no slip for B+ co and gives free slip in the limit /? -+O. Intermediate positive values of f i  correspond 
to finite slippage. Thus 

[Kbe(XT)l = PeZxT N:x(XT, y)N:~(xT, y)Tdy, (16) s 
where the natural boundary condition at xT has already been included. For regular, right circular 
cylindrical domains one can use outer product basis functions defined on rectangles, such as H$(q) 
and H;(t) where” 
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(1 - 5)3(353 + 95 + 81/16 I (1  + 5)(1 - 0 3 ( 3 5  + 5)11;/32 

with the chosen tensor product basis, N"(5, 11) = H:([) @ H;(q), it is necessary to impose additional 
constraints on the mixed derivatives at the side walls, say 

X x y ( o ,  Y) = X x x y ( 0 ,  y) = XX~(~T,  y) = 0. (18) 
Still the problem is indeterminate, or determind to within an arbitrary additive constant, because 
we have lost the usual Dirichlet condition, ~(co, y) = 0. Notice that antisymmetrical flow problems 
must exhibit ~ ( x ,  y0/2) = 0. In general, to pin down the potential and make the problem well-posed, 
suppose X(xT, y0/2) = 0. 

EXACT SOLUTION 

In the limit y - t  co such that a/dy( ) = 0 we obtain the so-called long bowl model equation which 
can be solved exactly. Thus 

for F*(x) = 0, subject to the boundary conditions 
L6X = 0 (19) 

~ ' ( 0 )  = ~ " ( 0 )  = 0, LSx(O) = c,, constant 

x(xT) = ~ ' ( x T )  = PeXTX"(XT) + L3X(xT) = 0, LSX(XT) = ~ 2 ,  constant (20) 
We can use superpositioning of the separate temperature inhomogeneities since the equation 
system is linear. Equation (19) can be integrated straightforwardly six times to yield the general 
solution 

However, existence of one-dimensional, axially invariant flow requires that c1 = c,, say a,. 
Application of these boundary conditions gives 

X"(0) = 2u, + a, + a4 = 0, 
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(22) 

+ B(xT + 2)]e-2“T + + [ ( P  - I)(+ + 3) + (xT + 1) - P(xT + 2)]e-3xT , 1 
{ -$(fix, + 1)- [2(P- 1) + (XT + 1)- B(xT + 2)]ePxT a1 a4=- 

DET 

+ [ - (BXT + 1) + 2(xT + - 1) + +(PXT + 1)(xT + 2) + (XT + 1) 

[(xT + l)  - B(xT + 211 1 - zxT} 

where the determinant, DET, is 

DET=P[(xT+ l)e-XT- 1]-$(1 -e-zxT ) ( /~xT  + 1) - (e-xT - I)(& + 1) 
- (B - l)e-xT[(xT + I)e-XT - 11. (23) 

Use of an algebraic manipulation code to invert the coenicient matrix is preferable to longhand. 
Let xT > 1, so that e-2xT << 1, then 

DET - P[(xT + l)e-XT - I] + (4 - e-xT)(pxT + 1) + (P - l)e-“,. 

a1 
a2 -- 

DET {2P-z(BxT+ I ) +  [(I -2P)(XT+ 1)+(2BxT+ 1)-B(XT+2)]e-”’}, 

{ -$(PxT + 1) - ([2(P - 1) + (xT + 1) - P(xT + 2)]e-”.}. a1 
a4 -- 

DET 

Further simplification with xT >> 1, so that e-xT << 1, yields 

a3 - 0, 3 4  DET-~BXT, ~ 2 %  -- 
2 ’  

, a5 - 0, U6 - 0. a1 a4- -- 
2 (25) 

EXACT CALCULATIONS 

Here we present some graphs illustrating sensitivity to the gap width in the long bowl limit. 
Suppose 

(26) a, = L,x(O) = - 1. 
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Figure 2. Effect of gap width on flow with no slip for a,  = - 1: - - -  - x, = co; ~ x T- - 8. , ---- x T- - 6 9 ~ . - 
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Physically, this corresponds to a unit strength, negative wall thermal gradient producing downflow 
at the outer rotor and upflow at the inner rotor. Figure 2 illustrates the effect of gap width on 
the flow with no slip for 1 < xT < 00. The usual long bowl solution is recovered for x T +  co, 
whereas significant differences exist for large, finite x T ,  say 8 scale heights. Reduced rotor spacing 
obviously de-stratifies the gas and shifts the cross-over point, x o ,  ever closer to the outer wall 
and concommitantly reduces the magnitude of the flow. For gaps of approximately 1 scale height, 
the countercurrent assumes a nearly antisymmetric appearance with xo N xT/2. Also, the flow 
no longer decays exponentially. Calculations for gap widths much less than 1/10 become quite 
difficult owing to the vanishing of the flow. Longer computer word lengths (e.g. quad precision) 
become necessary to compute the difference of almost equal terms. 

Next, Figure 3 gives the flow for x T =  co, 10,8,6 and a, = - 1 with free slip at the inner 
boundary. The only significant difference is for xT < 8. Sensitivity to /J is illustrated in Figure 4 
for slip parameters covering three orders of magnitude including the intermediate range, with 
xT = 8.  Decreasing gap width tends to generally reduce the axial flow. As much as 20 per cent 
variation in the maximum velocity is evident. Clearly these solutions naturally lie between the 
limits of no slip and free slip and depend on only the slip parameter and not a detailed knowledge 
of the slip velocity. 

FINITE ELEMENT NUMERICAL RESULTS 

Consider the class of two-dimensional, pure boundary value problems for a finite length rotating 
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Table I. Gas centrifuge data25 

a (radius) 0.09 145 m To (temperature) 300 K 
L (length) 3.353 m V, (rotor speed) 400,500,700 m/s 

annulus such that F*(x, y) = 0. These flows get their motivation from inhomogeneities on the 
vertical or horizontal surfaces. The special case of no slip at the inner rotor was computed using 
very large p (e.g. lo2'). For all the two-dimensional computations we specified a fixed, non-uniform 
computing grid with both axial and radial mesh refinements in the neighbourhood of the 
boundaries to resolve boundary layers. A uniform axial grid was used between the axially refined 
regions. Altogether, 168 elements involving 195 nodes (13 x 15) lead to 1170 simultaneous 
equations for the 24 degree of freedom element. 

Thermal driue 

Suppose that the thermal boundary conditions are identical along both inner and outer rotor 
walls. Let 8, be constant, so that the end-caps are in equilibrium with the local wall temperature. 
For calculational purposes consider the May machine25 described by the datagiven in Table I. Say 
pw = 100 torr (13330N/m2),26 V, = 700m/s, A T =  - 1K and xT = 8. 

Figure 5(a) gives the computed finite element approximation to the stream function on the 
half domain for no slip. The presence of the inner wall and new boundary conditions is most 
evident in the equipotential lines. Figure 5(b) gives the axial mass velocity distribution. Varying 
the slip parameter such that p = 1 (intermediate value), 0 (free slip) we obtain the streamlines 
shown in Figure 6(a) and (b). Clearly the circulation increases with increasing slip (decreasing 
fl), by as much as 10 per cent, which agrees with our long bowl observations (Figure 2). As in 
all these calculations, the flow patterns resemble one another, but slip leads to streamline 
penetration higher into the atmosphere and the locus of cross-over points moves radially inward. 

Compressible circular Couette jlow 

laminar flow solution for the azimuthal velocity'. 
Incompressible flow between infinitely long concentric rotating cylinders has the well known 

1 r z r i  
u(r) = ~ 2 Cr(R,r$ - R,r?) - L ( R ,  - R,)]. r i  - ri r 

The last term in the square bracket is due solely to the differential rotation. The above formula also 
holds for a compressible fluid. However that cannot be said for the finite length, compressible, heat 
conducting flow, which has non-zero values for all three velocity components. Incompressible, 
finite length circular Couette flow has been used to verify more general analyses6 and may be quite 
different from its compressible variant. Differential rotation can have several forms; end-caps 
may rotate synchronously with either the inner or outer wall. Either way the flow is antisym- 
metric about the midplane. Assume that R, = R + AR and Ri = R (nearly-rigid-body rotation), 
and a differential rotation of 1 Hz. 

241) 27ca 0.09145 
AO=--- - = 27.- 

R vw 700 ' 

The outer rotor has excess spin for stable flow 

A$, = A$xT = - 2AO = - 1.6417065 x 
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Figure 5(b). Three-dimensional plot of axial mass velocity for thermal drive 
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Figure 6(b). Thermal drive streamlines for free slip 
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Figure 7(a). Circular Couette flow streamlines with discontinuity at xT 
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Figure 7(b). Three-dimensional plot of axial mass velocity for circular Couette flow with discontinuity at xT 
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Figure 8(a). False Taylor flow streamlines with discontinuity at x = 0 
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Figure 8(b). Three-dimensional plot of axial mass velocity for false Taylor flow with discontinuity at x = 0 
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A 1Hz differential spin is comparable to a 1K differential temperature. For Rend = R, the corner 
singularity is at xT and the streamlines and axial flow are as given in Figures 7(a) and (b). Flow near 
the outer rotor is downward in the bottom of the machine. The discontinuity at x = 0 creates a 
much stronger counterclockwise circulation due to the exponential stratification. Strong Ekman 
pumping is exhibited with most of the flow going through the end Ekman boundary layers. Similar 
results hold for differential rotor temperatures. To our knowledge, this is the first solution to the 
compressible, finite length, pure circular Couette flow. Figure 7(a) resembles the two-cell 
meridional velocity field of the incompressible analogue6. In closing we observe that, instead of the 
Taylor instability, pancake theory predicts the reverse stable secondary flow if the sign of AR is 
reversed, that is, a false Taylor flow (Figures 8(a) and (b)). 
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NOMENCLATURE 

Stratification parameter, - [Z11'2 - - 
Outer rotor radius 
Integration constants 
ReS 12'4 A 
Determinant 
Source/sink in a simple cylinder 
Source/sink in an annulus 
Element load vector 
Cubic Hermite interpolating polynomial 
Quintic Hermite interpolating polynomial 
Element stiffness matrix 
Rotor length 
L6x + B 2 x y y  

Cex(exxxx)xxlxx 
Cex(exxxx)xxlx 
cex(exxxx)xxl 
(eXxxx)x 
Element width and height 
Molecular weight 
Local element shape function 
Transpose of local element shape function 
Prandtl number 
Perturbation pressure 
Universal gas constant 
Wall Reynolds number 
radial coordinate 
inner (outer) radius 
1 + [(y - 1)/2ylPrAZ 
Reference temperature 
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u, v,  w Perturbation velocities 
Ue Degrees of freedom 
v w  Wall speed 
We Local element weight function 
X Scale heights variable 
XT 
Y Dimensionless axial co-ordinate 
B, p’, p,, Slip coefficient 
r Computational domain 
6 Dimensionless gap width 
ar Closure 
? 
?i Dimensionless inner radius 
8 Temperature perturbation 
5 Element local x-wise co-ordinate 
Po c Assembly algorithm 

x Master potential 
R Rotation rate 
0 
- (Overbar) Boundary value 

Gap width measured in scale heights 

Dimensionless radius; element local axial co-ordinate 

Dimensionless zero order density, e-x 

4 8 - 2 0  

Dimensionless angular velocity perturbation; global shape function 
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